Nanofabrication using thermomechanical nanomolding

Mechanism of thermomechanical nanomolding (TMNM). (A) TMNM uses temperature and mechanical pressure to mold feedstock material into nanomold arrays. (B) Discussed material transport mechanisms on this length scale result in different length scaling, L versus d. Bulk diffusion (Eq. 1) results in L(d) ∝ const, interface diffusion gives L(d)∝1d√ (Eq. 2), and, for a dislocation slip mechanism, L(d) ∝dx (x ∈ [1,2]) (Eq. 3). (C) L(d) scaling experiments reveal the temperature-dependent mechanism for TMNM of Ag. Interface diffusion dominates TMNM at high temperatures, T > 0.4 Tm, whereas dislocation slip takes over at low temperatures, T < 0.4 Tm. (D) To compare TMNM across different systems, we normalize the…

Continue Reading

News Source: